Abstract:In order to identify and locate the debondingdamage on the bottom of the CRTS Ⅲ ballastless trackslab,firstly,the flexibility matrix of the track structure is obtained by its modal analysis,and the flexibility curvature eigenvalue matrixis constructed with the use of the noise reduction data processing and Gaussian curvature. According to the accuracy index that can reflect how irregular protrusions in the non-damage area affect the damage location and the effectiveness index that can identify the damage range,the reasonable density of measuring points is obtained. A variety of damage conditions are established to study the scope of applying the indexes for identification.The results show that the flexible curvature eigenvalue of the track slab with the debonding damage has obvious jump in the damaged area; and its peak value corresponds to the center of the damaged area,which can effectively identify the hidden damage at the bottom of the unit plate track plates of CRTS Ⅰ and type Ⅲ of different material properties. Aiming at the debonding damage of the slab bottom larger than 0.4 m×0.4 m,the measurement point density of 0.2 m is conducive to reducing the impact of noise on damage location and improving damage scope identification. When the side length of the damaged area at the bottom of the track slab is larger than 0.3 m,the flexibility curvature eigenvalue can accurately identify and locate the damage. The maximum absolute value of the flexibility curvature of the track slab increases with the debonding size,and they have a nearly linear relationship. Thus,with the visual graph of the flexibility curvature eigenvalue,the damage area can be identified.
宋小林,吕天航,裴承杰. 板边离缝对CRTS Ⅲ型轨道-路基动力特性的影响[J]. 西南交通大学学报,2018,53(5): 913-920SONG Xiaolin, LYU Tianhang, PEI Chengjie. Influence of interface crack on impact dynamic properties of CRTS Ⅲ slab track-subgrade system[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 913-920
[2]
VANDIVER J K. Detection of structural failure on fixed platforms by measurement of dynamic response[J]. Journal of Petroleum Technology, 1977, 29(3): 305-310
[3]
ADAMS R D, CAWLEY P, PYE C J, et al. A vibration technique for non-destructively assessing the integrity of structures[J]. Journal of Mechanical Engineering Science, 1978, 20(2): 93-100
[4]
CHANDRASHEKHAR M, GANGULI R. Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic[J]. Journal of Sound and Vibration, 2009, 326(3/4/5): 939-957
[5]
ROY K, RAY-CHAUDHURI S. Fundamental mode shape and its derivatives in structural damage localization[J]. Journal of Sound and Vibration, 2013, 332(21): 5584-5593
[6]
DIXIT A, HANAGUD S. Single beam analysis of damaged beams verified using a strain energy based damage measure[J]. International Journal of Solids and Structures, 2011, 48(3/4): 592-602
[7]
PHILIPS ADEWUYI A, WU Z S, KAMMRUJAMAN SERKER N H M. Assessment of vibration-based damage identification methods using displacement and distributed strain measurements[J]. Structural Health Monitoring, 2009, 8(6): 443-461
[8]
CADDEMI S, CALIÒ I. The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures[J]. Journal of Sound and Vibration, 2013, 332(12): 3049-3063
[9]
PANDEY A K, BISWAS M. Damage detection in structures using changes in flexibility[J]. Journal of Sound and Vibration, 1994, 169(1): 3-17
[10]
余云燕,鲍亦兴,陈云敏. 基于回传射线矩阵法框架结构的损伤检测研究[J]. 土木工程学报,2005,38(3): 53-58,69YU Yunyan, BAO Yixing, CHEN Yunmin. Damage detection of frame structures based on the reverbera tion matrix method[J]. China Civil Engineering Journal, 2005, 38(3): 53-58,69
[11]
ANTONACI P, BRUNO C L E, GLIOZZI A S, et al. Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods[J]. Cement and Concrete Research, 2010, 40(7): 1106-1113
[12]
MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring:a review[J]. Smart Materials and Structures, 2016, 25(5): 053001.1-053001.29
[13]
李淑春,刁波,郑晓宁,等. 钢筋混凝土截面损伤分析与检测[J]. 铁道科学与工程学报,2008,5(1): 11-15LI Shuchun, DIAO Bo, ZHENG Xiaoning, et al. Damage evaluation and detection on reinforced concrete section[J]. Journal of Railway Science and Engineering, 2008, 5(1): 11-15
[14]
KIM J T, RYU Y S, CHO H M, et al. Damage identification in beam-type structures:frequency-based method vs mode-shape-based method[J]. Engineering Structures, 2003, 25(1): 57-67
[15]
DAWARI V B, VESMAWALA G R. Modal curvature and modal flexibility methods for honeycomb damage identification in reinforced concrete beams[J]. Procedia Engineering, 2013, 51: 119-124
[16]
WU N, WANG Q. Experimental studies on damage detection of beam structures with wavelet transform[J]. International Journal of Engineering Science, 2011, 49(3): 253-261
[17]
李永梅,周锡元,高向宇,等. 柔度曲率法对梁结构的损伤诊断[J]. 北京工业大学学报,2008,34(11): 1173-1178LI Yongmei, ZHOU Xiyuan, GAO Xiangyu, et al. Damage diagnosis of beam structures by flexibility curvature method[J]. Journal of Beijing University of Technology, 2008, 34(11): 1173-1178
[18]
马骏,陈立,赵德有. 基于柔度曲率矩阵的加筋板结构损伤识别方法[J]. 船舶力学,2011,15(8): 881-891MA Jun, CHEN Li, ZHAO Deyou. Damage detection in stiffened panel based on flexibility curvature matrix[J]. Journal of Ship Mechanics, 2011, 15(8): 881-891
[19]
CHEN Li, MA Jun, ZHAO Deyou, et al. Curvature of flexibility matrix for damage identification in legs of jacket platforms[J]. China Ocean Engineering, 2008, 22(4): 547-559
[20]
NIE Z H, HAO H, MA H W. Structural damage detection based on the reconstructed phase space for reinforced concrete slab:experimental study[J]. Journal of Sound and Vibration, 2013, 332(4): 1061-1078
[21]
XU H, CHENG L, SU Z Q, et al. Damage visualization based on local dynamic perturbation:theory and application to characterization of multi-damage in a plane structure[J]. Journal of Sound and Vibration, 2013, 332(14): 3438-3462
[22]
XU J, WANG P, LIU H, et al. Identification of internal damage in ballastless tracks based on Gaussian curvature mode shapes[J]. Journal of Vibroengineering, 2016, 18(8): 5217-5229
[23]
陈立. 基于柔度曲率矩阵的结构损伤识别研究[D]. 大连:大连理工大学,2009.
[24]
周奎,徐宏文,方早,等. 基于柔度曲率曲线拟合的薄板结构损伤识别研究[J]. 上海理工大学学报,2018,40(3): 296-301ZHOU Kui, XU Hongwen, FANG Zao, et al. Damage identification of thin plate-type structures based on the flexibility curvature curve fitting[J]. Journal of University of Shanghai for Science and Technology, 2018, 40(3): 296-301