Experimental Study on Coefficient Value of Subgrade Reaction in Seismic Analysis of Underground Structures
XU Kunpeng1, JING Liping1, BIN Jia2, CHENG Xinjun3, LIANG Haian3
1. Institute of Engineering Mechanics,China Earthquake Administration,Key Laboratory of Earthquake Engineering and Engineering Vibration,China Earthquake Administration,Harbin 150080,China; 2. College of Civil Engineering,Hunan University of Technology,Zhuzhou 412000,China; 3. School of Civil and Architectural Engineering,East China University of Technology,Nanchang 330013,China
Abstract:In seismic analysis of underground structures, the precision of the coefficient of subgrade reaction directly determines the accuracy of response displacement method. Considering the deficiencies of relevant research on the coefficient of subgrade reaction, a quasi-static test method was proposed, a large quasi-static model box was developed, and two groups of tests with and without axial load in sandy soil were carried out. On this basis, a correction method for the coefficient of subgrade reaction along depth is proposed and verified by an example. Results indicate that the horizontal coefficient of subgrade reaction decreases with an increase in the pushover level and increases with the soil depth. Moreover, the additional stress has great influence on the coefficient value; using modified coefficient can significantly improve the accuracy of the response displacement method. Compared with the result adopting the coefficient in terms of static finite element method in the code, the maximum bending moment error of the underground structure can be reduced from 16.7% to 9.1%, and the relative displacement error between roof and floor can be reduced from 35.0% to 18.8%. Thus, the feasibility of the new coefficient measuring method and the rationality of the coefficient modified method are validated.
程新俊,景立平,崔杰,等. 不同场地沉管隧道振动台模型试验研究[J]. 西南交通大学学报,2017,52(6): 1113-1120CHENG Xinjun, JING Liping, CUI Jie, et al. Research of shaking table model tests on immersed tunnels under different conditions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1113-1120
[2]
HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293
Japan Society of Civil Engineers. Earthquake resistant design codes in Japan[S]. Tokyo:Waco Co.,Ltd.,2000.
[7]
朱令,丁文其,王瑞,等. 考虑成层土变异性的等效基床系数分析[J]. 岩石力学与工程学报,2014,33(S1): 3036-3041ZHU Ling, DING Wenqi, WANG Rui, et al. Analysis of equivalent coefficient of subgrade reaction considering variability of layered soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3036-3041
[8]
李英民,王璐,刘阳冰,等. 地下结构抗震计算地基弹簧系数取值方法研究[J]. 地震工程与工程振动,2012,32(1): 106-113LI Yingmin, WANG Lu, LIU Yangbing, et al. Analysis of methods for determining the spring constant of ground foundationin seismic design of underground structures[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(1): 106-113
[9]
NAEINI S A, TAHERABADI E. Numerical and theoretical study of plate load test to define coefficient of subgrade reaction[J]. Journal of Geotechnical and Transportation Engineering, 2015, 1(2): 38-42
[10]
刘益平,孙焯. 基床系数试验测试与取值方法比选[J]. 电力勘测设计,2018(增刊1): 130-135LIU Yiping, SUN Chao. Comparison of test and evaluation methods of coefficient of subgrade reaction[J]. Electric Power Survey and Design, 2018(S1): 130-135
[11]
韩相超,雷醒民,吕远强. 渭北黄土塬地基土基床系数空间分布规律探索[J]. 陕西煤炭,2016,35(2): 51-55HAN Xiangchao, LEI Xingmin, LYU Yuanqiang. Research on the spatial distribution of subgrade coefficient of the foundation soil in Weibei loess tableland[J]. Shanxi Coal, 2016, 35(2): 51-55
[12]
王沛,魏丽,王晓燕,等. 旁压试验在车站基坑工程勘察中应用[J]. 土工基础,2019,33(2): 228-231WANG Pei, WEI Li, WANG Xiaoyan, et al. Application of pressuremeter tests in the geotechnical investigations of a metro station[J]. Soil Engineering and Foundation, 2019, 33(2): 228-231
[13]
牛真茹,李飞飞,庞炜. 合肥地区黏性土基床系数分布规律及相关性研究[J]. 铁道勘察,2018,44(4): 87-89NIU Zhenru, LI Feifei, PANG Wei. Study on distribution and correlation analysis of reaction coefficient of subgrade cohesive soil in Hefei area[J]. Railway Investigation and Surveying, 2018, 44(4): 87-89
[14]
BURHAN A, AYHAN G. Modulus of subgrade reaction that varies with magnitude of displacement of cohesionless soil[J]. Arabian Journal of Geosciences, 2018, 11(13): 351-358
[15]
禹海涛,张正伟,朱春成,等. 关于反应位移法中地层变形模式的讨论[J]. 结构工程师,2018,34(2): 145-151YU Haitao, ZHANG Zhengwei, ZHU Chuncheng, et al. Discussion on the ground deformation mode in response displacement method[J]. Structural Engineers, 2018, 34(2): 145-151