Applicability of Novel Pile-Plank Embankment in Seasonally Frozen Regions
ZHANG Shuming1, JIANG Guanlu1, DU Dengfeng1, LIAO Yilai1, XUE Yuan2, LI Anhong2
1. School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China; 2. China Railway Eryuan Engineering Group Co.,Ltd.,Chengdu 610031,China
Abstract:In order to control the frost heaving damage in the seasonally frozen regions of the Moscow−Kazan high-speed railway, a novel pile-plank subgrades with an insulation board was proposed. Comparing the performance of three kinds of thermal insulation materials, expanded polystyrene (EPS) foam board, polyurethane (PU) board and extruded polystyrene (XPS) foam board shows that the XPS insulation board could be used in the new subgrade for its better performance in heat insulation, waterproof, impervious and compressive properties. The thermo-elasto-plastic model was established to study the influences of laying range, insulation board thickness,filling height, and external temperature on the mechanical deformation of the new type subgrade. The results show that when the laying range of the insulation board is extended to the signal wire slot, it can do better to preventing the downward transfer of negative temperatures (reducing the frozen depth), and diminishing the harmful effect of soil frost heaving surrounding the pile-plank structure. With increasing board thickness, the heaving amount decreases exponentially and frozen depth decreases close to a parabolic curve. The upper surface of the insulation board can prevent the downward transfer of negative temperatures and its lower surface plays a role in controlling the soil temperature dissipating under embankment. Increasing the filling height of embankment is helpful to suppress the subgrade heaving amount and reduce the usage thickness of the insulation board. The insulation board thickness should be greater than 0.4 m when the filling height is 0.8 m; and the board thickness should be greater than 0.31 m when the filling height is 2.8 m.
TABER S. The mechanics of frost heaving[J]. The Journal of Geology, 1930, 38(4): 303-317
[2]
MILLER R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393: 1-11
[3]
DASH J G. Thermomolecular pressure in surface melting:motivation for frost heave[J]. Science, 1989, 246(4937): 1591-1593
[4]
SHENG D, ZHANG S, NIU F J, et al. A potential new frost heave mechanism in high-speed railway embankments[J]. Geotechnique, 2014, 64(2): 144-154
[5]
李强,姚仰平,韩黎明,等. 土体的“锅盖效应”[J]. 工业建筑,2014,44(2): 69-71LI Qiang, YAO Yangping, HAN Liming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2): 69-71
[6]
THOMAS H R, CLEALL P J, LI Y, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Geotechnique, 2009, 59(3): 173-184
[7]
许健,牛富俊,李爱敏,等. 季节冻土区保温法抑制铁路路基冻胀效果研究[J]. 铁道学报,2010,32(6): 124-131XU Jian, NIU Fujun, LI Aimin, et al. Analysis of the prevention effect of thermal-insulation method on frost heave of railway subgrade in seasonal frozen regions[J]. Journal of the China Railway Society, 2010, 32(6): 124-131
[8]
许健,牛富俊,牛永红,等. 季节冻土区防冻胀护道对保温路基地温特征影响效果研究[J]. 铁道学报,2011,33(3): 84-90XU Jian, NIU Fujun, NIU Yonghong, et al. Study on the temperature field of insulated roadbed with frost-resistant berm on seasonal frozen region[J]. Journal of the China Railway Society, 2011, 33(3): 84-90
[9]
董元宏,牛永红,崔维孝,等. 哈尔滨—齐齐哈尔客运专线路基防冻工程模型试验研究[J]. 冰川冻土,2014,36(4): 828-835DONG Yuanhong, NIU Yonghong, CUI Weixiao, et al. Model test study on the anti-frost engineering along the Harbin-Qiqihar passenger dedicated railway[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 828-835
[10]
田亚护,肖伟,沈宇鹏,等. 隔热层对季节冻土区无砟轨道路基冻胀防治的适应性分析[J]. 铁道学报,2014,36(5): 76-81TIAN Yahu, XIAO Wei, SHEN Yupeng, et al. Adaptability of heat-insulating course to prevention of frost heave of unballasted railway track subgrade in seasonal frozen regions[J]. Journal of the China Railway Society, 2014, 36(5): 76-81
[11]
国家铁路局. 高速铁路设计规范:TB10621—2014[S]. 北京:中国铁道出版社,2014.
[12]
詹永祥,蒋关鲁,魏永幸. 无碴轨道桩板结构路基在地震荷载下的动力响应分析[J]. 中国铁道科学,2006,27(6): 22-26ZHAN Yongxiang, JIANG Guanlu, WEI Yongxing. Dynamic response analysis on the pile-plank structure roadbed of ballastless track under earthquake load[J]. China Railway Science, 2006, 27(6): 22-26
[13]
詹永祥,蒋关鲁,胡安华,等. 遂渝线无碴轨道桩板结构路基动力响应现场试验研究[J]. 岩土力学,2009,30(3): 832-835ZHAN Yongxiang, JIANG Guanlu, HU Anhua, et al. Study of dynamic response of pile-plank embankment of ballastless track based on field test in Suining—Chongqing high-speed railway[J]. Rock and Soil Mechanics, 2009, 30(3): 832-835
[14]
詹永祥,蒋关鲁,牛国辉,等. 武广线高边坡陡坡地段桩板结构路基的设计理论探讨[J]. 铁道工程学报,2007(增刊1): 94-96,101ZHAN Yongxiang, JIANG Guanlu, NIU Guohui, et al. Theoretical exploration on design of pile-plate structure subgrade in steep slope section of high side slop on Wuchang-Guangzhou railway passenger dedicated Line[J]. Journal of Railway Engineering Society, 2007(S1): 94-96,101
[15]
董元宏,朱东鹏,张会建,等. 应用于冻土路基的XPS保温板力学性能[J]. 中国公路学报,2015,28(12): 64-68DONG Yuanhong, ZHU Dongpeng, ZHAGN Huijian, et al. Mechanical properties of XPS thermal insulation board applied in permafrost embankment[J]. China Journal of Highway and Transport, 2015, 28(12): 64-68
[16]
樊凯,章金钊,陈建兵. 保温材料在青藏公路路基工程中的应用[J]. 公路,2004(8): 163-166FAN Kai, ZHANG Jinzhao, CHEN Jianbing. Application of thermal insulating material in embankment engineering of Qinghai-Tibet highway[J]. Highway, 2004(8): 163-166
LAI Y M, WU Z W, ZHU Y L, et al. Nonlinear analysis for the coupled problem of temperature,seepage and stress fields in cod-region tunnels[J]. Tunnelling and Underground Space Technology, 1998, 13(4): 435-440