1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. Sichuan Highway Planning, Survey, Design and Research Institute Ltd., Chengdu 610041, China; 3. Chongqing Branch, Changjiang River Scientific Research Institute, Chongqing 400026, China
Abstract:In order to obtain the creep deformation law of tunnel anchor of Luding Dadu River super-large suspension bridge on Yakang Expressway, creep test of 1∶10 in-situ scale model of tunnel anchor was carried out according to similarity theory. The graded loading test of model anchor was carried out with gas-liquid loading system, the creep process of model anchor, surrounding rock and interface dislocation under 1.00P (single design tension of scale model), 3.50P, and 7.00P loads were analyzed. The three-dimensional viscoelastic-plastic simulation analysis of creep of anchorage and surrounding rock mass was carried out by FLAC3D, and the simulation value was compared with the measured value. The results show that under 1.00P, 3.50P, and 7.00P loads, the maximum creep of anchor body are 0.62, 0.97 mm, and 1.58 mm, the maximum creep of surrounding rock are 0.49, 0.85, and 1.38 mm, and the maximum creep of anchor body and surrounding rock are 0.15, 0.64 mm, and 1.43 mm, respectively. The measured creep deformation of anchorage and surrounding rock is equivalent to the calculated value, and the creep trend is basically the same. The tunnel anchor and surrounding rock of Yakang super-large suspension bridge belong to stable creep under various loads, the creep of anchorage does not affect the long-term stability of suspension bridge under normal design loads.
蒋昱州, 王瑞红, 朱杰兵, 等. 伍家岗大桥隧道锚三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2016(增刊2):4103-4113. JIANG Yuzhou, WANG Ruihong, ZHU Jiebing, et al. Three-dimensional geomechanical model test of tunnel anchor of Wujiagang Bridge[J]. Journal of Rock Mechanics and Engineering, 2016(S2):4103-4113.
[3]
黎训国,汪丽君,卢磊,等. 山区悬索桥超大隧道锚施工工艺[J]. 公路,2017(5):111-115 LI Xunguo, WANG Lijun, LU Lei, et al. Construction technology of super large tunnel anchor for suspension Bridge in Mountain Area[J]. Highway, 2017(5):111-115
[4]
罗莉娅,卫军. 岩体蠕变对悬索桥隧道锚围岩稳定性的影响分析[J]. 公路工程,2007,32(3):133-136 LUO Liya, WEI Jun. Effect of rock mass creep on stability of anchorage surrounding rock of suspension bridge tunnel[J]. Highway Engineering, 2007, 32(3):133-136
[5]
朱玉. 隧道锚设计体系中的关键问题研究与实践[D]. 武汉:华中科技大学, 2005.
[6]
黄东,姚建军,汪宏. 山区公路悬索桥隧道锚设计[J]. 桥梁建设,2010(3):47-50 HUANG Dong, YAO Jianjun, WANG Hong. Design of tunnel anchors for suspension bridges in mountainous highways[J]. Bridge Construction, 2010(3):47-50
[7]
肖明清. 复合式衬砌隧道的总安全系数设计方法探讨[J]. 铁道工程学报,2018,35(1):84-88 XIAO Mingqing. Discussion on the design method of total safety factor of composite lining tunnel[J]. Journal of Railway Engineering, 2018, 35(1):84-88
[8]
GRIGGS D. Creep of rocks[J]. Journal of Geology, 1939, 47(3):225-251
[9]
易颖,周伟,马刚,等. 基于精确缩尺的颗粒材料流变研究[J]. 岩土力学,2016,37(6):1799-1808 YI Ying, ZHOU Wei, MA Gang, et al. Rheological study of granular materials based on exact scaling[J]. Geomechanics, 2016, 37(6):1799-1808
[10]
蒋海飞,吴祖松,陈坤,等. 岩石单轴拉伸蠕变特性试验研究[J]. 地下空间与工程学报,2017(4):877-885 JIANG Haifei, WU Zusong, CHEN Kun, et al. Experimental study on uniaxial tensile creep behavior of rocks[J]. Journal of Underground Space and Engineering, 2017(4):877-885
[11]
杨超,黄达,蔡睿,等. 张开穿透型单裂隙岩体三轴卸荷蠕变特性试验[J]. 岩土力学,2018(1):53-62 YANG Chao, HUANG Da, CAI Rui, et al. Triaxial unloading creep test of open-through single-fracture rock mass[J]. Geotechnical Mechanics, 2018(1):53-62
[12]
刘传孝,王龙,张晓雷,等. 不同围压下深井煤岩短时蠕变试验的细观损伤机制分析[J]. 岩土力学,2017,38(9):2583-2588 LIU Chuanxiao, WANG Long, ZHANG Xiaolei, et al. Meso-damage mechanism analysis of short-term creep test of deep coal and rock under different confining pressures[J]. Geomechanics, 2017, 38(9):2583-2588
[13]
吴相超. 软岩隧道式锚碇原位缩尺模型试验及稳定性研究[D]. 重庆:重庆大学, 2016.
[14]
熊英,申俊昕. 龙江悬索桥西岸锚碇基础设计及施工要点[J]. 公路交通技术,2012(5):86-89 XIONG Ying, SHEN Junxin. Key points for design and construction of west bank anchorage foundation of longjiang suspension bridge[J]. Highway Traffic Technology, 2012(5):86-89