1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; 2. Institute of Management Science, Hohai University, Nanjing 210098, China
Abstract:In order to promote water resources big data and its applications in water resources management, it is necessary to conduct a review of the researches in this field and recommend future research directions. This paper firstly introduces the background and development of water resources big data and explains its concept and connotation. Based on these, the research framework of water resources big data has been developed, and meanwhile data storage and sharing, data analysis platform, data mining algorithms, data visualization, and its applications have been analyzed respectively. Finally, the future explorations about water resources big data have been recommended from the following aspects:exploring data integrated methods, developing data mining algorithms, establishing the data security mechanisms, and developing the integrated decision-making platform of water resources big data.
陈军飞, 邓梦华, 王慧敏. 水利大数据研究综述[J]. 水科学进展, 2017, 28(4): 622-631.
CHEN Junfei, DENG Menghua, WANG Huimin. A review of water resources big data. Advances in Water Science, 2017, 28(4): 622-631.
GIJZEN H. Development:big data for a sustainable future[J]. Nature, 2013, 502(7469):38.
[2]
KIM Y, KANG N, JUNG J, et al. A review on the management of water resources information based on big data and cloud computing[J]. Journal of Wetlands Research, 2016, 18(1):100-112.
[3]
CHALH R, BAKKOURY Z, OUAZAR D, et al. Big data open platform for water resources management[C]//International Conference on Cloud Technologies and Applications. New York:IEEE, 2015:1-8.
[4]
AI P, YUE Z X. A framework of processing water resources big data and application[C]//YARLAGADDA P. Applied Mechanics and Materials. Switzerland:Trans Tech Publications Ltd, 2014.
[5]
AI P, YUE Z, YUAN D, et al. A scene analysis model for water resources big data[C]//International Symposium on Distributed Computing and Applications for Business Engineering and Science. New York:IEEE, 2015:280-283.
[6]
SUCIU G, SUCIU V, DOBRE C, et al. Tele-monitoring system for water and underwater environments using cloud and big data systems[C]//20th International Conference on Control Systems and Computer Science. New York:IEEE, 2015:809-813.
[7]
CHEN Y, HAN D. Big data and hydroinformatics[J]. Journal of Hydroinformatics, 2016, 18(4):599-614.
[8]
冯吉平, 陈微, 官涤, 等. 大数据技术在松辽流域水环境管理中的应用展望[J]. 水利发展研究, 2014, 14(9):63-65. (FENG J P, CHEN W, GUAN D, et al. The application prospect of big data in water environment management in Songliao River basin[J].Water Resources Development Research, 2014, 14(9):63-65. (in Chinese))
[9]
DAHLHAUS P, MURPHY A, MACLEOD A, et al. Making the invisible visible:the impact of federating groundwater data in Victoria, Australia[J]. Journal of Hydroinformatics, 2016, 18(2):238-255.
[10]
LI D, GUO S L, YIN J B. Big data analysis based on POT method for design flood prediction[C]//IEEE International Conference on Big Data Analysis (ICBDA). New York:IEEE, 2016:1-5.
[11]
ZHONG Y C, ZHANG L, XING S J, et al. The big data processing algorithm for water monitoring of the three Gorges Reservoir area[J]. Abstract and Applied Analysis, 2014(5):1-7.
[12]
张建云, 王国庆, 杨扬, 等. 气候变化对中国水安全的影响研究[J]. 气候变化研究进展, 2008, 4(5):290-295. (ZHANG J Y, WANG G Q, YANG Y, et al. The possible impacts of climate change on water security in China[J].Advances in Climate Change Research, 2008, 4(5):290-295. (in Chinese))
[13]
王元卓, 靳小龙, 程学旗. 网络大数据:现状与展望[J]. 计算机学报, 2013, 36(6):1125-1137. (WANG Y Z, JIN X L, CHENG X Q. Network big data:present and future[J]. Chinese Journal of Computers, 2013, 36(6):1125-1137. (in Chinese))
[14]
龚琪慧, 刘伟, 李坤, 等. 基于大数据的水利数据中心建设[C]//第三届中国水利信息化与数字水利技术论坛论文集. 南京:河海大学出版社, 2015:243-248. (GONG Q H, LIU W, LI K, et al. Water resources data center construction based on big data[C]//3nd Water Conservancy Information and Digital Water Conservancy Technology Forum. Nanjing:Hohai University Press, 2015:243-248. (in Chinese))
[15]
陈蓓青, 谭德宝, 田雪冬, 等. 大数据技术在水利行业中的应用探讨[J]. 长江科学院院报, 2016, 33(11):59-62. (CHEN B Q, TAN D B, TIAN X D, et al. Discussion on the application of big data technology in water conservancy industry[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(11):59-62. (in Chinese))
[16]
黄忠佳. 对水利大数据价值提升的几点思考[J]. 水利发展研究, 2014, 14(5):35-37. (HUANG Z J. On the value promotion of water resources big data[J]. Water Resources Development Research, 2014, 14(5):35-37. (in Chinese))
[17]
DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113.
[18]
HU Y, GARCIA-CABREJO O, CAI X, et al. Global sensitivity analysis for large-scale socio-hydrological models using Hadoop[J]. Environmental Modelling & Software, 2015, 73:231-243.
[19]
SONG Y, KIM C S. A study on the big data analysis system for searching of the flooded road areas[J]. Journal of Korea Multimedia Society, 2015, 18(8):925-934.
[20]
成建国, 钱峰, 艾萍. 国家水利数据中心建设方案研究[J]. 中国水利, 2008(19):32-24. (CHEN J G, QIAN F, AI P. Studies on proposal of national water information center construction[J].China Water Resources, 2008(19):32-34. (in Chinese))
[21]
程益联, 付静. 水利数据整合共享研究[J]. 水利信息化, 2014(6):13-16. (CHENG Y L, FU J. Study on integration and sharing of water resources data[J].Water Resources Informatization, 2014(6):13-16. (in Chinese))
[22]
冯钧, 唐志贤, 盛振宇, 等. 水利数据中心数据交换平台设计探讨[J]. 水利信息化, 2014(1):15-19. (FENG J, TANG Z X, SHENG Z Y, et al. Design of data exchange platform in water resources data center[J].Water Resources Informatization, 2014(1):15-19. (in Chinese))
[23]
冯钧, 许潇, 唐志贤, 等. 水利大数据及其资源化关键技术研究[J]. 水利信息化, 2013(4):6-9. (Feng J, XU X, TANG Z X, et al. Research on key technology of water big data and resource utilization[J].Water Resources Informatization, 2013(4):6-9. (in Chinese))
[24]
莫荣强, 爱萍, 吴礼福, 等. 一种支持大数据的水利数据中心基础框架[J]. 水利信息化, 2013(3):16-20. (MO R Q, AI P, WU L F, et al. A fundamental frame of water resources data center supporting big data[J]. Water Resources Informatization, 2013(3):16-20. (in Chinese))
[25]
陈昂, 隋欣, 廖文根, 等. 基于数据云的水利信息化数据共享体系构建模式[J]. 科技导报, 2014, 32(34):53-57. (CHEN A, SUI X, LIAO W G, et al. Construction of data sharing system of water information based on cloud storage[J]. Science & Technology Review, 2014, 32(34):53-57. (in Chinese))
[26]
AI P, YUE Z X. A framework for processing water resources big data and application[J]. Applied Mechanics and Materials, 2014, 519/520:3-8.
[27]
陈宁, 许明家, 高祥涛, 等. 基于消息的水利数据共享交换平台设计与实现[J]. 水利信息化, 2012(4):29-33. (CHEN N, XU M J, GAO X T, et al. Design and implementation of data share and exchange platform of water resources based on message[J]. Water Resources Informatization, 2012(4):29-33. (in Chinese))
[28]
刘汉刚, 李光. 水利数据中心资源开发与应用研究[J]. 水利信息化, 2014(2):25-29. (LIU H G, LI G. Research on resource development and application of water resources data center[J]. Water Resources Informatization, 2014(2):25-29. (in Chinese))
[29]
杨帆, 岳兆新, 艾萍. 广东省水利数据中心数据资源化的主要环节[J]. 水利信息化, 2014(3):25-28. (YANG F, YUE Z X, AI P. Key steps of data resources utilization for Guangdong water resources data center[J].Water Resources Informatization, 2014(3):25-28. (in Chinese))
[30]
HU C Y, ZHAO J, YAN X S, et al. A MapReduce based Parallel Niche Genetic Algorithm for contaminant source identification in water distribution network[J]. Ad Hoc Networks, 2015, 35:116-126.
[31]
ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark:cluster computing with working sets//Proc of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley:USENIX Association, CA, USA, 2010.
[32]
温馨, 罗侃, 陈荣国. 基于Shark/Spark的分布式空间数据分析框架[J]. 地球信息科学, 2015, 17(4):401-406. (WEN X, LUO K, CHEN R G. A framework of distributed spatial data analysis based on Shark/Spark[J]. Journal of Geo-Information Science, 2015, 17(4):401-406. (in Chinese))
[33]
王保义, 王冬阳, 张少敏. 基于Spark和IPPSO_LSSVM的短期分布式电力负荷预测算法[J]. 电力自动化设备, 2016, 36(1):117-122. (WANG B Y, WANG D Y, ZHANG S M. Distributed short-term load forecasting algorithm based on Spark and IPPSO-LSSVM[J].Electric Power Automation Equipment, 2016, 36(1):117-122. (in Chinese))
[34]
朱跃龙, 王咏梅, 万定生, 等. 基于语义相似的水文时间序列相似性挖掘:以太湖流域大浦口站水位数据为例[J]. 水文, 2011, 31(1):35-40. (ZHU Y L, WANG Y M, WAN D S, et al. Similarity mining of hydrological time series based on semantic similarity measures[J].Journal of China Hydrology, 2011, 31(1):35-40. (in Chinese))
[35]
艾萍, 王志坚, 索丽生, 等. 水文数据在线分析与知识发现系统模型研究[J]. 水利学报, 2001(11):15-19. (AI P, WANG Z J, SUO L S, et al. System model for online analytical processing and data mining of hydrological data[J].Journal of Hydraulic Engineering, 2001(11):15-19. (in Chinese))
[36]
韩红旗. 数据挖掘技术在水利工程管理中的应用研究[J]. 中国管理信息化, 2010(4):76-79. (HAN H Q. Application study of data warehouse and data mining in water conservancy project management[J].China Management Informatization, 2010(4):76-79. (in Chinese))
[37]
袁昊, 刘廷建, 邓睿. 基于粗糙集数据挖掘技术开发的用水量计划系统[J]. 科技情报开发与经济, 2004, 14(2):179-180. (YUAN H, LIU T J, DENG R. Water consumption planning system based on the development of rough set oriented data mining technique[J]. Sci-Tech Information Development & Economy, 2004, 14(2):179-180. (in Chinese))
[38]
谢敦礼, 李浩, 叶福根, 等.数据挖掘在城市供水系统中的一个应用[J].系统工程理论与实践, 2003(6):127-131. (XIE D L, LI H, YE F G, et al. An application study of data warehouse and data mining in water supply[J]. Systems Engineering:Theory & Practice, 2003(6):127-131. (in Chinese))
[39]
PEUQUET D J, KRAAK M J. GEOBROWSING:creative thinking and knowledge discovery using geographic visualization[J]. Information Visualization, 2002, 1(1):80-91.
[40]
杨传国, 陈喜, 张润润, 等. 淮河流域近500年洪旱事件演变特征分析[J].水科学进展, 2014, 25(4):503-510. (YANG C G, CHEN X, ZHANG R R, et al. Characteristics of flood and drought events of the last half millennium in Huaihe River basin[J]. Advances in Water Science, 2014, 25(4):503-510. (in Chinese))
[41]
YU M, LIU Y. The possible impact of urbanization on a heavy rainfall event in Beijing[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(16):8132-8143.
[42]
张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016, 27(4):485-491. (ZHANG J Y, WANG Y T, HE R M, et al. Discussion on the urban flood and waterlogging and causes analysis in China[J]. Advances in Water Science, 2016, 27(4):485-491. (in Chinese))
[43]
刘国纬, 沈国昌. 中国年最大致洪暴雨落区研究[J]. 水科学进展, 2006, 17(2):151-159. (LIU G W, SHEN G C. Study on flood-causing annual maximum storm over China[J].Advances in Water Science, 2006, 17(2):151-159. (in Chinese)).
[44]
陆桂华, 何健, 吴志勇, 等. 淮河流域致洪暴雨的异常水汽输送[J]. 水科学进展, 2013, 24(1):11-17. (LU G H, HE J, WU Z Y, et al. Water vapor transport anomalies of flood-causing rainstorms in Huaihe River basin[J]. Advances in Water Science, 2013, 24(1):11-17. (in Chinese))
[45]
任国玉, 任玉玉, 战云健, 等. 中国大陆降水时空变异规律:Ⅱ:现代变化趋势[J]. 水科学进展, 2015, 26(4):451-465. (REN G Y, REN Y Y, ZHAN Y J, et al. Spational and temporal patterns of precipitation variability over mainland China:Ⅱ:recent trends[J]. Advances in Water Science, 2015, 26(4):451-465. (in Chinese))
[46]
李宗坤, 葛巍, 王娟, 等. 中国大坝安全管理与风险管理的战略思考[J]. 水科学进展, 2015, 26(4):589-595. (LI Z K, GE W, WANG J, et al. Strategic consideration of dam safety management and risk management in China[J]. Advances in Water Science, 2015, 26(4):589-595. (in Chinese))
[47]
THOMPSON K, KADIYALA R. Leveraging big data to improve water system operations[J]. Procedia Engineering, 2014, 89:467-472.
[48]
刘予伟, 刘东润, 陈献耘. 大数据在水资源管理中的应用展望[J]. 水资源研究, 2015, 4(5):470-476. (LIU Y W, LIU D R, CHEN X Y. Prospect for big data applications in water resources management[J]. Journal of Water Resources Research, 2015, 4(5):470-476. (in Chinese)).
[49]
SHAHANAS K M, SIVAKUMAR P B. Framework for a smart water management system in the context of smart city initiatives in India[J]. Procedia Computer Science, 2016, 92:142-147.
[50]
金喜来, 徐瑶. 国家水资源监控能力建设项目数据库标准规范应用实践[J]. 中国水利, 2015(19):59-61. (JIN X L, XU Y. Application of database specifications in national project of capacity building for water resources monitoring[J]. China Water Resource, 2015(19):59-61. (in Chinese))
[51]
LI Z, YANG D W, HONG Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River[J]. Journal of Hydrology, 2013, 500:157-169.
[52]
WANG D, DING W, YU K, et al. Towards long-lead forecasting of extreme flood events:a data mining framework for precipitation cluster precursors identification[C]//Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2013.
[53]
MCGOVERN A, LI D J G, TROUTMAN N, et al. Using spatiotemporal relational random forests to improve our understanding of severe weather processes[J]. Statistical Analysis and Data Mining, 2011, 4(4):407-429.
[54]
HE Y Y, XU Q F, YANG S L, et al. Reservoir flood control operation based on chaotic particle swarm optimization algorithm[J].Applied Mathematical Modelling, 2014, 38(17):4480-4492.
[55]
ZHANG Z B, JIANG Y Z, ZHANG S H, et al. An adaptive particle swarm optimization algorithm for reservoir operation optimization[J]. Applied Soft Computing, 2014, 18(5):167-177.
[56]
贾本有, 钟平安, 陈娟, 等. 复杂防洪系统联合优化调度模型[J]. 水科学进展, 2015, 26(4):560-571. (JIA B Y, ZHONG P A, CHEN J, et al. Coordinated optimal operation model of complex flood control system[J]. Advances in Water Science, 2015, 26(4):560-571. (in Chinese))
[57]
陈文龙, 宋利祥, 邢领航, 等. 一维-二维耦合的防洪保护区洪水演进数学模型[J]. 水科学进展, 2014, 25(6):848-855. (CHEN W L, SONG L X, XING L H, et al. A 1D-2D coupled mathematical model for numerical simulating of flood routine in flood protected zone[J]. Advances in Water Science, 2014, 25(6):848-855. (in Chinese))
[58]
冯仲恺, 廖胜利, 牛文静, 等. 改进量子粒子群算法在水电站群优化调度中的应用[J]. 水科学进展, 2015, 26(3):413-422. (FENG Z K, LIAO S L, NIU W J, et al. Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations[J]. Advances in Water Science, 2015, 26(3):413-422. (in Chinese))
[59]
YU C H, LUO D, DING W, et al. Spatio-temporal asynchronous co-occurrence pattern for big climate data towards long-lead flood prediction[C]//IEEE International Conference on Big Data. New York:IEEE, 2015:865-870.
[60]
WAN D, XIAO Y, ZHANG P, et al. Hydrological big data prediction based on similarity search and improved BP Neural network[C]//IEEE International Congress on Big Data. New York:IEEE, 2015:343-350.
[61]
KRISTÓF D, GIACHETTA R, OLASZ A, et al. Using big geospatial data for fast flood detection:developments from the IQmulus project[C]//Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. New York:IEEE, 2015:838-841.