Analysis of spatiotemporal characteristics of surface soil moisture across China based on multi-satellite observations
LIU Ronghua1,2, ZHANG Ke3,4, CHAO Lijun3, WANG Qingqing3, HONG Yang5, TU Yong1,2, QU Wei1,2
1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 2. Research Center on Flood & Drought Disaster Reduction of the Ministry of Water Resources, Beijing 100038, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; 4. College of Hydrology and Water Recourses, Hohai University, Nanjing 210098, China; 5. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Abstract:As a key state variable, soil moisture influences hydrological, meteorological and ecological processes. The objective of this study is to study the spatiotemporal characteristics of surface soil moisture across China using multi-satellite observations and uncover the driving forces of these characteristics. We applied an ensemble average approach to derive daily surface soil moisture with a spatial resolution of 25 km across China from 2015 to 2016 from five satellites, including SMAP, SMOS, AMSR2, FY3B, and FY3C. Uncertainty in these satellite products and their differences were further quantified by intercomparison. The spatial distribution of surface soil moisture and its connection with the spatial distribution of hydroclimatic zones were also analyzed. The correlations of soil moisture with precipitation and actual evapotranspiration were studied, too. The results show that spatial distribution of soil moisture across China corresponds well with the distribution of hydroclimatic zones:soil moisture generally increases from the northwest of China to the southeast and northeast of China. Clear seasonality appears in most areas of China with higher values in summer and lower values in winter. However, the amplitude and shape of seasonality differ in different parts of China. Temporal variabilities of soil moisture in over 60% of China are strongly controlled by the synchronous and antecedent precipitations. In over 87.5% of China, soil moisture and actual evapotranspiration show significant positive correlations and mutual dependence.
刘荣华, 张珂, 晁丽君, 王青青, 洪阳, 涂勇, 曲伟. 基于多源卫星观测的中国土壤湿度时空特征分析[J]. 水科学进展, 2017, 28(4): 479-487.
LIU Ronghua, ZHANG Ke, CHAO Lijun, WANG Qingqing, HONG Yang, TU Yong, QU Wei. Analysis of spatiotemporal characteristics of surface soil moisture across China based on multi-satellite observations. Advances in Water Science, 2017, 28(4): 479-487.
GALLEGO-ELVIRA B, TAYLOR C M, HARRIS P P, et al. Global observational diagnosis of soil moisture control on the land surface energy balance[J]. Geophys Research Letters, 2016, 43(6):2623-2631.
[2]
丁旭, 赖欣, 范广洲. 中国不同气候区土壤湿度特征及其气候响应[J]. 高原山地气象研究, 2016, 36(4):28-35. (DING X, LAI X, FAN G Z. Soil moisture characteristics and climate response of different climatic regional in China[J]. Plateau and Mountain Meteorology Research, 2016, 36(4):28-35. (in Chinese))
[3]
陈海山, 周晶. 土壤湿度年际变化对中国区域极端气候事件模拟的影响研究:Ⅱ:敏感性试验分析[J]. 大气科学, 2013, 37(1):1-13. (CHEN H S, ZHOU J. Impact of interannual soil moisture anomaly on simulation of extreme climate events in China:part Ⅱ:sensitivity experiment analysis[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1):1-13. (in Chinese))
[4]
韩帅, 师春香, 林泓锦, 等. CLDAS土壤湿度业务产品的干旱监测应用[J]. 冰川冻土, 2015, 37(2):446-453. (HAN S, SHI C X, LIN H J, et al. The CLDAS soil moisture operation products applied to monitor soil drought[J]. Journal of Glaciology and Geocryology, 2015, 37(2):446-453. (in Chinese))
[5]
习阿幸, 刘志辉, 卢文君. 干旱区季节性冻土冻融状况及对融雪径流的影响[J]. 水土保持研究, 2016, 23(2):333-339. (XI A X, LIU Z H, LU W J. Processes of seasonal frozen Soil freezing-thawing and impact on snowmelt runoff in arid area[J]. Research of Soil and Water Conservation, 2016, 23(2):333-339. (in Chinese))
[6]
曹伟, 盛煜, 吴吉春, 等. 青藏高原坡面冻土土壤水分空间变异特性[J]. 水科学进展, 2017, 28(1):32-40. (CAO W, SHEN Y, WU J C, et al. Spatial variability of permafrost soil-moisture on the slope of the Qinghai-Tibet Plateau[J]. Advances in Water Science, 2017, 28(1):32-40. (in Chinese))
[7]
谢颂华, 涂安国, 莫明浩, 等. 自然降雨事件下红壤坡地壤中流产流过程特征分析[J]. 水科学进展, 2015, 26(4):526-534. (XIE S H, TU A G, MO M H, et al. Analysis on the characteristic of interflow production processes on red soil slopes in the case of natural rainfall events[J]. Advances in Water Science, 2015, 26(4):526-534. (in Chinese))
[8]
李龙, 郝明德, 王安, 等. 人工降雨条件下耕翻面积对水土流失的影响[J]. 水土保持通报, 2015, 35(5):34-38. (LI L, HAO M D, WANG A, et al. Effects of ploughing area on soil and water loss under stimulated rainfall conditions[J]. Bulletin of Soil and Water Conservation, 2015, 35(5):34-38. (in Chinese))
[9]
ENTEKHABI D, NJOKU E G, O'NEILL P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5):704-716.
[10]
KERR Y H, WALDTEUFEL P, RICHAUME P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403.
[11]
KOIKE T. Description of the GCOM-W1 AMSR2 soil moisture algorithm. Tokyo:Japan Aerospace Exploration Agency Earth Observation Research Center, 2013:1-119.
[12]
庄媛, 师春香, 沈润平, 等. 中国区域多种微波遥感土壤湿度产品质量评估[J]. 气象科学, 2015, 35(3):289-296. (ZHUANG Y, SHI C X, SHEN R P, et al. Quality evaluation of multi-microwave remote sensing soil moisture products over China[J]. Journal of the Meteorological Sciences, 2015, 35(3):289-296. (in Chinese))
[13]
席家驹, 文军, 田辉, 等. AMSR-E遥感土壤湿度产品在青藏高原地区的适用性[J]. 农业工程学报, 2014, 30(13):194-202. (XI J J, WEN J, TIAN H, et al. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet Plateau[J]. Transctions of the Chinese Society of Agricultural Engineering, 2014, 30(13):194-202. (in Chinese))
[14]
WU Q S, LIU H X, WANG L, et al. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the international soil moisture network[J]. International Journal Applied Earth Observation and Geoinformation, 2016, 45:187-199.
[15]
ZENG J Y, CHEN K S, BI H Y, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4929-4940.
[16]
陈立波, 何金海, 谭(龙天)等. 中国近20 a卫星遥感土壤湿度的季节变化及其验证[J]. 气象科学, 2015, 35(6):744-750. (CHEN L B, HE J H, TAN Y, et al. Seasonal variation and validation of soil moisture based on recent 20 a satellite-derived data in China[J]. Journal of the Meteorological Sciences, 2015, 35(6):744-750. (in Chinese))
[17]
RODRIGUEZ-FERNANDEZ N J, KERR Y H, van DER SCHALIE R, et al. Long term global surface soil moisture fields using an SMOS-trained neural network applied to AMSR-E data[J]. Remote Sensing, 2016, 8(11):959.[doi:10.3390/rs8110959]
[18]
HUFFMAN G J, ADLER R F, BOLVIN D T, et al. The TRMM multisatellite precipitation analysis (TMPA):Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1):38-55.
[19]
ZHANG K, KIMBALL J S, NEMANI R R, et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J]. Scientific Reports, 2015, 5:15956.[doi:10.1038/srep15956]
[20]
张存杰, 廖要明, 段居琦, 等. 我国干湿气候区划研究进展[J]. 气候变化研究进展, 2016, 12(4):261-267. (ZHANG C J, LIAO Y M, DUAN J Q, et al. The progresses of dry-wet climate divisional research in China[J]. Progressus Inquisitiones De Mutatione Climatis, 2016, 12(4):261-267. (in Chinese))