1. 南京大学地球科学学院水科学系,江苏南京 210093; 2. Desert Research Institute, NV Las Vegas 89119
Tempered time-fractional advection-dispersion equation for modeling non-Fickian transport
XIA Yuan1, WU Jichun1, ZHANG Yong2
1. Department of Hydrosciences, Nanjing University, Nanjing 210093, China; 2. Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV 89119, USA
Abstract:This study shows in detail how the classical time fractional advection-dispersion equation (TFADE) can be generalized using the concept of tempering. The generalized TFADE model is then approximated by a new spatiotemporal splitting method, which is computationally more efficient than the classical Eulerian solver due to the logic tempering of the time nonlocal dependence in solute transport. Numerical experiments show that the generalized TFADE model captures a broad range of non-Fickian diffusion, where the tempering parameter λ (which is the inverse of the characteristic time), fractional index γ, and mobile/immobile capacity coefficient β can control the nuance of transport behavior. The model also efficiently distinguishes the mobile phase from the total phase for solute transport through heterogeneous media, which is critical for practical applications.
NEUMAN S P, TARTAKOVSKY D M. Perspective on theories of non-Fickian transport in heterogeneous media[J]. Advances in Water Resources, 2009, 32(5): 670-680.
[2]
施小清,吴吉春,吴剑锋,等. 多个相关随机参数的空间变异性对溶质运移的影响[J]. 水科学进展, 2012,23(4): 509-515.(SHI Xiaoqing,WU Jichun,WU Jianfeng,et al. Effects of the heterogeneity of multiple correlated random parameters on solute transport[J]. Advances in Water Science, 2012,23(4):509-515.(in Chinese))
[3]
陆乐,吴吉春,王晶晶. 多尺度非均质多孔介质中溶质运移的蒙特卡罗模拟[J]. 水科学进展, 2008, 19(3): 333-338.(LU Le,WU Jichun,WANG Jingjing. Monte Carlo modeling of solute transport in a porous medium with multi-scale heterogeneity[J]. Advances in Water Science, 2008,19(3):333-338.(in Chinese))
[4]
陈彦,吴吉春. 含水层渗透系数空间变异性对地下水数值模拟的影响[J]. 水科学进展, 2005, 16(4): 482-487.(CHEN Yan,WU JiChun. Effect of the spatial variability of hydraulic conductivity in aquifer on the numerical simulation of groundwater[J]. Advances in Water Science, 2005,16(4):482-487.(in Chinese))
[5]
施小清,吴吉春,袁永生,等. 含水介质各向异性对渗透系数空间变异性统计的影响[J]. 水科学进展, 2005, 16(5): 679-684.(SHI Xiaoqing,WU Jichun,YUAN Yongsheng,et al. Effect of the anisotropy in porous media on the spatial variability of the hydraulic conductivity[J]. Advances in Water Science, 2005,16(5):679-684.(in Chinese))
[6]
施小清,吴吉春,袁永生. 渗透系数空间变异性研究[J]. 水科学进展, 2005, 16(2): 210-215.(SHI Xiaoqing,WU Jichun,YUAN Yongsheng. Study on the spatial variability of hydraulic conductivity[J]. Advances in Water Science, 2005,16(2): 210-215.(in Chinese))
[7]
张德生,沈冰,沈晋,等. 非均匀土壤中溶质运移的两区模型及其解析解[J]. 水科学进展, 2003, 14(1): 72-78.(ZHANG Desheng,SHEN Bing,SHEN Jin,et al. Two-Region model for solute transport through heterogeneous soils and calculation of the analytical solution[J]. Advances in Water Science, 2003,14(1):72-78.(in Chinese))
[8]
马东豪,王全九. 土壤溶质迁移的两区模型与两流区模型对比分析[J]. 水利学报, 2004(6): 92-97.(MA Donghao,WANG Quanjiu. Analysis of two-region model and two-flow domain model for soil solute transport[J]. Journal of Hydraulic Engineering,2004(6):92-97.(in Chinese))
[9]
HAGGERTY R, GORELICK S M. Multiple-rate mass-transfer for modeling diffusion and surface-reactions in media with pore-scale heterogeneity[J]. Water Resources Research, 1995, 31(10): 2383-2400.
[10]
PATRICK W P, ZHENG C, GORELICK S M. A general approach to advective-dispersive transport with multirate mass transfer[J]. Advances in Water Resources, 2005, 28(1): 33-42.
[11]
SCHUMER R, BENSON D A, MEERSCHAERT M M, et al. Fractal mobile/immobile solute transport[J]. Water Resources Research, 2003, 39(10): 1296.
BERKOWITZ B, EMMANUEL S, SCHER H. Non-Fickian transport and multiple-rate mass transfer in porous media[J]. Water Resources Research, 2008, 44(3): W03402.
[14]
METZLER R, KLAFTER J. The random walk's guide to anomalous diffusion: A fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77.
[15]
FOMIN S, CHUGUNOV V, HASHIDA T. Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone[J]. Transport in Porous Media, 2010, 81(2): 187-205.
[16]
ZHANG Y. Moments for tempered fractional advection-diffusion equations[J]. Journal of Statistical Physics, 2010, 139(5): 915-939.
[17]
黄冠华,黄权中,詹红兵,等. 均质介质中污染物迁移的分数微分对流-弥散模拟[J]. 中国科学:D辑, 2005, 35(z1): 249-254.(HUANG Guanhua,HUANG Quanzhong,ZHAN Hongbing, et al. Fractional advection-dispersion simulation on contaminant transport in homogeneous media[J]. Science in China: Ser D,2005,35(z1):249-254.(in Chinese))
[18]
MEERSCHAERT M M, SCHEFFLER H P, TADJERAN C. Finite difference methods for two-dimensional fractional dispersion equation[J]. Journal of Computational Physics, 2006, 211(1): 249-261.
[19]
ZHANG Y, MEERSCHAERT M M. Gaussian setting time for solute transport in fluvial systems[J]. Water Resour Res, 2011, 47(8): W8601.
[20]
ZHANG Y, BENSON D A, BAEUMER B. Predicting the tails of breakthrough curves in regional-scale alluvial systems[J]. Ground Water, 2007, 45(4): 473-484.